Form Approved
REPORT DOCUMENTATION PAGE OB 0188
o B o e T o Lend somrans g o e el o iy S St 1

cotiection of Information, indluding wgge:(iom tor redudnq his burden, 10 Washington Hesdquartaers Services, Directorate for information Operation and l\eporu. 1215 Jetterson
Devis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of iManagement end Budget, Paperwork Reduction Project (0704-0188), Wathington, DC 20503,

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES, COVERED
Sep 95 SBIR Phase I Final Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Interactive Augmentation of Computer Generated
Force Behavior Based on Cooperative and. M67004-94-C-0055

Reinforcement Learning

6. AUTHOR(S)
David A, Handelman

Stephen H. Lane

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
) REPORT NUMBER
KATrix Inc.
3 Alexander Street
30 n Str TR95-0901

Princeton, NJ 08540

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. sponsonmcmomronmc
US Army STRICOM Lt R
Attn:AMSTI-EE (Admiral Piper)
12350 Research Parkway
Orlando, FL 32826

WPRELECTERS
;?;.i ’

111995

11. SUPPLEMENTARY NOTES

122. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
k3 mﬁ‘nﬁgm‘ TON 87, (T 8
PUBLIC UNLIMITED Sl
: Bppreyvad for prbi m‘i;ﬁf“‘j*ﬂﬂb '

Dirsribation UnBeaftad

13. ABSTRACT (Maximum 200 words)

State-of-the-art Computer Generated Forces (CGFs) are predictable, non-adaptive, behaviorally
distinguishable from manned simulators, and once "figured out," can be outsmarted by manned
simulator crews. KATrix’s NeurRule™ Technology integrates neural networks with rule-based
systems, enabling SAF systems to continuously learn from manned simulators, human instructors, and
its own mistakes. This Technology will make CGF behaviors more realistic, and will save time and
money by permitting Battle Trainers to modify CGF behavior without the intervention of programmers.
Phase I of this project has produced a design methodology for augmenting computer generated force
behavior with the NeurRule™ Technology concepts of cooperative and reinforcement learning. The
Phase I results indicate that 1) Intelligent CGFs can improve task performance through on-line learning,
utilizing information from both supportive and adversarial sources, and 2) the NeurRule™ Technology
can coexist with existing SAF software such as modSAF and SAFDI. Phase II will extend these
results by enabling SAF operators to interactively develop, through use of an appropriate graphical user
interface, CGF behaviors specific to dismounted-infantry operations in urban environments.
14, SUBJECT TERMS 15. NUMBER OF PAGES
Computer Generated Forces, Machine Learning 52

Distributed Interactive Simulation, Neural Network [16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSE Std. 239-18
298102

REF 9

Interactive Augmentation of Computer Generated Force Behavior
Based on Cooperative and Reinforcement Learning

SBIR A93-320 Phase I Final Report

KATrix Inc.
330 Alexander Street
Princeton, NJ 08540
(609) 921-7544

— e,

9951027 110

Interactive Augmentation of Computer Generated Force Behavior
Based on Cooperative and Reinforcement Learning

SBIR A93-320 Phase I Final Report

Summary

State-of-the-art Computer Generated Forces (CGFs) are predictable, non-adaptive, behaviorally
distinguishable from manned simulators, and once "figured out," can be outsmarted by manned
simulator crews. Currently, the only remedy for these performance shortcomings is a costly
rewrite of the behavioral software model. We propose a hybrid CGF control architecture that
integrates neural networks with rule-based systems to enable human-like learning, allowing a SAF
system to continuously learn from manned simulators, human instructors, and its own mistakes.
This technology will make CGF behaviors more realistic, and will save time and money by
permitting Battle Trainers to modify CGF behavior without the intervention of programmers.
Phase I of this project has produced a design methodology for augmenting computer generated
force behavior with the NeurRule Technology concepts of cooperative and reinforcement
learning. The Phase I results indicate that 1) the resulting Intelligent CGFs can improve task
performance through on-line learning, utilizing information from both supportive and adversarial
sources, and 2) the NeurRule Technology can coexist with existing SAF software such as
modSAF and SAFDI. Phase II will extend these results by enabling SAF operators to develop,
through use of an appropriate graphical user interface, CGF behaviors specific to dismounted-
infantry operations in an Urban Environment. One of the main goals of the Phase II effort will be
to demonstrate that SAF operators can gradually shift their attention from low-level control tasks
to high-level coordinated plans of action as Smart Opponent and Virtual Teammate CGFs gain
competence by learning relevant urban assault tactics and evasive maneuvers.

At e

LI . . 2
. Aeacselion Faop SR

| Distributiony -
Avallability dgggg-mmm

Tavail andjow
Blot , | Spectsl

R
a\%;' < ;. # E

Table of Contents

1. PROBLEM STATEMENT 4
1.1 SIGNIFICANCE OF THE PROBLEM..........cccutuiiiiiiittiattaisieetettetste i tsees sttt sssesseessssscsee s st sscassesessssesasessesesesesesens 4
1.1.1 Current SAF Systems Don't Do As Well As Manned FOFCESc.ccccoovoviieiiiinianiiieeeeeeee e 4
1.1.2 CGF Behavioral Anomalies Jeopardize Simulation RESUILSc.ccocovveeiioriireniireriireniesesieseneeeeeeaeeenens 4
1.1.3 Current Repair Cycle is Costly, Time Consuming, and of Limited EffeCtiVenessc..ccocovvevevavenianns 5
1.1.4 Current SAF Systems Cannot Adapt 10 New TRFEGLSccocvoveeiueueieeeieiieieieieeie s 5
1.2 APPLICATION OF KATRIX NEURRULE™ INTELLIGENT AGENT TECHNOLOGYccoiiimiririniinrerienissisessreesseennees 6
2, TECHNICAL OBJECTIVES AND APPROACH 8
2.1 GENERAL PROJECT OBIECTIVESvututeiiatiieetetss ettt eas sttt ss ettt ettt 8
2.2 TECHNICAL APPROACH.ueututiiaiattuimtiateteneetesetatesestetases e toeaesaea et aseaeees e eseeesea e s esesee et as et eec s aeereseeseaseseneeeasens 9
2.2.1 General Description of KATrix NeurRule Technologyc.cccoeviviiiiiiniiiiniiniciniiiicnec e 9
2.2.2 NeurRule Intelligent Agent Control APCRITECIUFEc.ccooeueeieieieiei e ettt 10
2.2.3 Human-to-Machine Skill Transfer through Cooperative Learning................cccovcoeververeesresseseerennenns 11
2.2.4 Human-to-Machine Skill Transfer through Reinforcement LEQrningcccccoovveeevrernvneneseeeneenenns 12
2.2.5 Summary of Computer Generated Force Learning BeRAVIOFSc.cccccoveeeninineeceniiees e 13
2.2.6 Sample Learning Scenarios and Implementation ISSUESccccceiveeeeerereeeeieeaieeeeereeveeeesesn, 13
3. PHASE I RESULTS 17
3.1 PHASE I TECHNICAL OBJECTIVEScoeuittiiiteiieteti ettt bbbttt 17
3.2 SPECIFICATION OF INTELLIGENT CGF BEHAVIORSo.ciuiiiuiaiiiiieiiisiasinsinintateaetosinsseniasseieseseasessanessenasenas 18
3.2.1 Intelligent CGF Behaviors - Basic ASSUMPDIIONS.cccccocuioriinninneneiis e sessesese e sesseess e 18
3.2.2 Intelligent CGF Development CYCIec.coc.cooiiiiiriiiiiiieai ettt 19
3.3 PERFORMANCE OF INTELLIGENT CGF BEHAVIORSccctuiiiitiiiiiiiiiiiitnttet sttt tessie e ebeseessiesees 21
3.3.1 Forest Chase Battle SCONAPIOccoooviiiiiiieeeeee ettt 21
3.3.2 Bridge CrosSing Battle SCENAIIO..................ccc.ccoiviuniiiiniiiniiiiniae et st sressare s sseressaraesesbasesbenannes 32
3.4 INTEGRATION OF INTELLIGENT CGF BEHAVIORS WITH EXISTING SAF SYSTEMS.........ccociiiiiiiiiiiirieneniraeneneenes 39
341 Rl WOFK.ccoovvcviiiiieiie ettt ettt b bt s st es sttt r e bbb ene bbb bees 39
3.4.2 Role of NeurRule™ TeChROIOY................cccccviviirieiiiieisei et rene e 41
4. PHASE I1 WORK 44
4.1 PHASE II TECHNICAL OBJIECTIVES.........cctitittititittsistetetetetets b sttt tes st es e eaesas s e s s et bbbt bbb bbbt eseneses e 44
4.2 PHASE I TECHNICAL APPROACH.o.ouiiuiiiitcieiiiatt s etetebess et te s et ce et te st sene st es st eb et es e 45
4.2.1 Authoring of Intelligent Computer Generated FOrce BeRQVIOFSc..cccoueoeeeeeeeeeeeneeneiieeeeseeenes 45
4.2.2 Trainer-in-the-loop CGF Behavior DevelOpment...............cccccovcvreivieieieisssaiieieseeseiess e svene s 47
5. CONCLUSIONS 49
5.1 IDENTIFIED NEED MET BY THE PROJECTcocccmiiiiriiiiiriitietiit et 49
5.2 ANTICIPATED RESULTS.........oiuiiiiiiiiiiiiiiiiiiiiiiieieis sttt ettt et b bttt 49
5.3 POTENTIAL USE BY THE FEDERAL GOVERNMENTcotitiuiiriiiisiietssetsesesseees ettt seen e 50
6. REFERENCES 51
3

1. PROBLEM STATEMENT

1.1 SIGNIFICANCE OF THE PROBLEM

State-of-the-art Semi-Automated Forces (SAF) systems in use by the Army today
produce behaviors that are predictable, non-adaptable, and distinguishable from those of
manned forces. In addition, the functionality of these SAF systems is based on
operations consistent with the theatres of war existing at the time of their design. A
SAF system which could continuously learn from trainees, human instructors, or its own
mistakes would provide much more challenging and realistic friendly and opposing
forces as it could adapt to new threats and tactics as they develop, and keep pace with
likely battle scenarios in a changing world. Currently, the only solution to these
performance limitations, if they are even possible, is a costly and time consuming rewrite
of the Computer Generated Force (CGF) behavioral software model.

1.1.1 Current SAF Systems Don't Do As Well As Manned Forces

Semi-Automated Forces (SAF) systems have been used in Distributed Interactive Simulation
to reduce the cost of training by substituting manned Opposing Force (OPFOR) simulators with
computer-generated simulations. The Turing Test for Semi-Automated Forces has been that its
behavior be indistinguishable from the equivalent manned simulators, from the standpoints of both
human observers and computed statistics.

All SAF systems developed to date have been either static rule-based or procedural-based
systems which do not have the capability to adapt their behavioral models. Since the depth of
complexity of the behavior of a human has never been incorporated into these systems, the
resulting behaviors of the CGF entities appear normal in many situations, but break down into
bizarre, conspicuous, anomalous behavior in many special cases. This phenomenon has been
observed in all SAF systems delivered to-date.

1.1.2 CGF Behavioral Anomalies Jeopardize Simulation Results

When a manned simulator crew detects anomalous behavior in an enemy vehicle, they know
that it is a CGF vehicle and not another manned crew. Knowing that the CGF vehicle is not as
intelligent, and cannot learn from its mistakes, the manned crew treats the CGF vehicle differently,
exploits its obvious shortcomings, and learns how to easily defeat it. Furthermore, the manned
crew becomes more adept over time at detecting and defeating CGF vehicles. These unrealistic
combat interactions jeopardize the credibility and accuracy of simulation results.

1.1.3 Current Repair Cycle is Costly, Time Consuming, and of Limited Effectiveness

The following procedure has historically occurred:

O A battle observer notices one of these behavioral anomalies, stops the current
experiment or training exercise, and informs the SAF Operator of the problem.

W The SAF Operator spends time reproducing and observing the phenomenon, then
reports it.

W A procurement activity is initiated to allow software developers to work on the
problem.

W The developers iterate and test potential fixes. The more complicated the behavioral
model, the longer it takes to find the cause of the anomaly and repair it.

O When that one particular problem is fixed, the software developers create a new
software release and the sites undergo the pain and suffering of a software upgrade.

The current repair cycle for these CGF deficiencies is shown on the left side of Fig. 1.1.
There is a tremendous amount of lost time, foregone site utilization, and additional software
development cost in this cycle. The end result of this repair cycle is usually a custom patch for
one or two of these specific anomalies. As these systems get exponentially more complicated, the
number of possible anomalies also increases exponentially.

1.1.4 Current SAF Systems Cannot Adapt to New Threats

One of the principal uses of SIMNET and DIS is for combat weapons development.
Hypothetical weapon systems are placed on the synthetic battlefield and tested against
benchmarked systems to ascertain their contribution to overall force effectiveness. In the real
world, an enemy would more than likely change his tactics upon the detection of a new weapon
system with unanticipated performance characteristics.

Example: A new sensor capable of detecting ground vehicles moving
faster than 45 kph is incorporated into friendly force vehicles. The enemy,
seeing that the kill rate for vehicles moving faster that 45kph has increased
dramatically, changes his tactics and does not exceed 45kph.

Current SAF systems cannot learn from battlefield results, and hence, would never change
their behavior and travel less than 45kph. If a new sensor, like the one described, were tested
against current SAF systems, the evaluation of its effectiveness couldn't possibly be accurate.

1.2 APPLICATION OF KATRIX NEURRULE™ INTELLIGENT AGENT TECHNOLOGY

In order to properly prepare soldiers for events in a changing world, current SAF systems
must be made more realistic, flexible and adaptive. Battle Trainers should be able to create and
modify specific CGF behaviors in a timely manner, without the delay and cost normally associated
with a procurement cycle involving programmers. KATrix’s NeurRule Intelligent Agent
Technology, when incorporated into existing SAF software, can provide these desired system
capabilities by creating Computer Generated Forces that:

O Continuously learn behaviors through mimicking examples of others.

O Modify behaviors in real-time through the adaptation of running software, as
opposed to fixing source code off-line.

U Learn in a “show” and “tell” manner from Battle Trainer as opposed to being coded
by a programmer.

Q Continuously learn DURING a battle, just like soldiers.

O As the software becomes smarter, computational loading actually drops!

The right side of Fig. 1.1 shows what a repair cycle using our NeurRule Technology might look
like. The procedure should be as simple as:

Q Battle Trainer notices anomaly.
O Battle Trainer places CGF in special learning mode.

U Battle Trainer tunes behavior using a high-level GUI development tool or jumps into
a simulator and directly demonstrates correct behavior to SAF system (multiple
times if necessary).

QO SAF system learns correct behavior in real-time.

This streamlined repair cycle cuts several organizations out of the loop, saves a tremendous
amount of time and money, and performs the correction to the degree and satisfaction of the end
user, the Battle Trainer. In addition, the SAF system will continually hone its own behavior,
fixing problems BEFORE the Battle Trainer detects them.

Current CGF Development Path

Battle Trainer Detects
Behavior Anomaly

v

Battle Trainer Informs
SAF Operator

v

SAF Operator Reproduces
Anomaly and Tries to
Characterize it

v

PROCUREMENT
ACTION

v

SAF Operator Reports
Anomaly to
Software Developers

v

Software Developers
Reproduce Anomaly
Guess at Cause
Try a Fix

v

| Successful ?

]”°_..

+ Yes

Software Developers
Cut New Release
of SAF Software

v

Site is Taken Down
for Software Upgrade

v

SAF Operator Learns
New Software
Functionality

Proposed CGF Development Path

Battle Trainer Detects
Behavior Anomaly

Y

Battle Trainer Jumps
Into Simulator and
Demonstrates to SAF
How to Correctly
Perform Manuever

v

No
[SAF Gets it Right ? }—7

* Yes

DONE

Figure 1.1. Comparison of current and proposed CGF development paths.

2. TECHNICAL OBJECTIVES AND APPROACH

2.1 GENERAL PROJECT OBJECTIVES

The general objective of this project is to investigate how Army SAF systems can
be made more realistic, flexible and adaptive by enabling Battle Trainers (SAF
System Operators) to interactively create and modify complex CGF behaviors on-
line in a timely manner, without the delay and cost normally associated with a
procurement cycle involving programmers.

The present project includes the following general objectives that will demonstrate the utility
of applying the KATrix’s NeurRule™ Intelligent Agent Technology to computer generated forces
(CGF) in distributed interactive simulations, :

O Show that CGF models can be made to continuously adapt in real-time.
e From its own behavior.

e From its opponents (both successful strategies and mistakes).

O Show that the model can be taught by a human instructor.
o Cognitive plans of action.

e Hand/eye coordination.

QO Show that training is the same as for a human student, and can be done by military
personnel instead of a programmer.

L Show that the model's learning rate and level of competency is user selectable.

QO Show that as the model learns, computational burden actually drops.

2.2 TECHNICAL APPROACH

Our hybrid learning approach to computer generated forces development attempts
to copy two key aspects of human skill acquisition: how successful control strategies
are conveyed from one human to another, and how processing within the learner
changes as performance improves.

Computer generated forces that can continually challenge players with a range of skills, from
novice to expert, are extremely rare as the required logic is too time consuming and costly to
create. KATrix NeurRule Technology meets this need by enabling a new generation of “smart
games” to be developed with computer generated forces that learn and behave based on their
experiences with the human player.

2.2.1 General Description of KATrix NeurRule Technology

KATrix NeurRule™ Technology is an outgrowth of research in robotic control theory and
artificial intelligence that attempts to copy key features of human motor control and skill
acquisition. The core components of the NeurRule™ Technology consist of Limb Coordination,
Neural Network, Rule-Based Control, and Base Agent Libraries that allow reflexive, goal-
directed, and learning behaviors to be added to fully-articulated characters in interactive computer
games and virtual reality simulations.

Limb Coordination Library. A unique approach to inverse kinematics especially well-
suited toward interactive simulations and computer gaming. Provides real-time, task-
oriented control of [imb movements and balance in fully interactive human and animal-like
articulated figures. Pull forward on a character’s hand and it leans back to keep its
balance. Throw a ball at its head and it ducks out of the way. By combining multiple low-
level Limb Coordination primitives called Synergies, designers can achieve sophisticated
inverse kinematic behaviors such as walking, running and jumping while minimizing design
effort and on-line computational costs.

Neural Network Library. Computational techniques enabling Smart Opponent™ and
Virtual Teammate™ game characters to be created that exhibit human-like learning
characteristics. Smart Opponents learn your moves, then use them against you. They get
better the more they are played, and learn to defeat players who are not innovative.
Virtual Teammates are on your side, and enable players to transfer (download) their hand-
eye coordination to an Intelligent Agent in much the same way a coach trains an athlete.

Rule-Based Control Library. Goal-directed inference engine and knowledge base
allowing designers to create intelligent behaviors using hierarchical rule-based descriptions
of competitive strategies and tactics. Issue the command “attack incoming bogie at 12
o’clock” and Intelligent Agent-based characters decompose and execute goal-directed
plans of action automatically as the inference engine searches the task knowledge base.

When rule-based task execution is used in conjunction with neural networks, Intelligent
Agents can acquire skills over time through on-line learning.

Agent Class Library. An object-oriented framework for building Intelligent Agents.
Includes sensorimotor system utilities enabling Intelligent Agents to focus on objects of
interest in the world (such as walls, doors, trees, body parts of other agents, etc.), sense
relevant state information (such as range and bearing to the player, location of the nearest
door, proximity to food, etc.), generate smooth dynamical responses to control inputs, and
execute basic motor tasks (such as Goto, LookAt, AlignWith, Follow, etc.).

2.2.2 NeurRule Intelligent Agent Control Architecture

Built upon the NeurRule Technology Libraries listed above, the NeurRule Intelligent Agent
Control Architecture [Handelman & Lane, 1993a,b,c; Handelman, Lane & Gelfand, 1990, 1992,
1993; Lane, Handelman & Gelfand, 1992] depicted in Fig. 2.1 contains both rule-based
components and neural networks. The rule-based components of this hybrid controller provide a
system designer with a convenient high-level symbolic way of specifying explicit plans, rules of
engagement, and control strategies.

Rule-based components continuously invoke a two-stage inferential process:

O The first stage specifies desired behavior through goal-directed task descriptions.

L The second stage provides error-driven feedback control commands using fuzzy
rules, and conventional control algorithms that tend to move the system in the
direction of desired behavior.

Neural network components [Albus, 1975, Lane, Handelman & Gelfand, 1992] gradually learn
to minimize error-driven commands using a training paradigm called feedback-error-learning
[Miyamoto et al, 1988]. This learning procedure enables the system to:

QO Autonomously learn how to improve task performance, and

U Decrease the amount of computation required by "turning off" error-driven rules
when learning has sufficiently improved performance.

KATrix’s proprietary neural network architecture differs from most others in two key ways.
First, it performs local, not global, function approximation. That means that when it learns
something in one context, it is less likely to corrupt things it has already learned in other contexts.
It also results in less learning-related computation. Second, our neural networks learn on-line.
This means that unlike most architectures, they don't need a large amount of random batch
training samples. Learning occurs as the dynamic system evolves naturally, that is, as the game is
played.

10

Human operator-based error-driven commands also can be accommodated in the NeurRule
Control Architecture. Thus, in addition to enabling autonomous learning, the control architecture
also permits an operator to train CGFs on-line by

Q showing it using joysticks, datagloves, etc., and

Q telling it using rule-based descriptions

how to improve task performance.

Intefligent Agent Controller

Neuraf Network-Based
» Context-Sensitive

Memory

Simulated Environment
Rule-Based Rule-Based Intelligent x Manned
Goal-Directed F Error-Driven Agent Opposing

it Task Description |

Dynamics Farce

Explanation Desired State Demonstration § Satisfaction-Based
Channel States Estimates Channel Teleoperator Inputs
("Tell") ("Show")

Battle Trainer/Operator

Figure 2.1. NeurRule™ Intelligent Agent Control Architecture utilizes three
sources of training information. Goal-directed task descriptions specify plans of
action and rules of engagement. Rule-based error-driven commands and
teleoperator inputs are summed with neural network outputs to control the
intelligent agent, and are faded out as the neural networks learn. The hybrid
system also learns from opponents by reinforcing in its own task space actions of
the opponent that prove successful against it.

2.2.3 Human-to-Machine Skill Transfer through Cooperative Learning

When a CGF is configured as a Virtual Teammate, it is "on your side," and can
be trained using cooperative learning to autonomously perform a task using

hands-on examples (showing) and rule-based task descriptions (telling) of proper
task execution.

11

As a Virtual Teammate, the CGF and operator work as a team to accomplish a task, and the
operator's contribution smoothly diminishes as the system learns. Consequently, we call this form
of human-to-machine skill transfer cooperative learning. Virtual Teammate skill acquisition is
associated with the shift from a predominantly feedback-oriented, rule-based representation of
control to a predominantly feedforward, neural network-based form. Analogies can be drawn to
the way humans acquire skill, highlighting features we believe are essential to obtaining truly
autonomous CGFs.

Q A limited amount of strategic knowledge provided by rule-based components
initiates motion.

Q Performance improves incrementally through learning, with inferential problem
solving giving way to reflexive motor programs provided by neural networks.

Computational efficiency is intended for areas of the dynamic state-space visited often, as in
repetitive maneuvers. Inferential problem solving remains ready, however, to handle infrequently
executed tasks, or changes in the intelligent agent or its environment that render previously
acquired expertise ineffective. Hence CGFs developed with our NeurRule Technology are highly
adaptive and robust.

2.2.4 Human-to-Machine Skill Transfer through Reinforcement Learning

When a CGF is configured as a Smart Opponent, it can be trained using
reinforcement (punishment/reward) learning to represent player strategies and
tactics that have proven successful against itself.

In this scenario, a CGF configured as a Smart Opponent starts out with general rule-based
knowledge about competitive strategies and tactics. As the associated NeurRule controller
encounters human behavior, its neural networks learn to copy useful behaviors, and to reinforce
actions that prove successful against itself. For example, hiding and attack behaviors exhibited by
human opponents can be mimicked and used against them, as well as knowledge concerning how
to aim and when to fire.

O These synthetic enemies learn to defeat human opponents that continue doing the
same thing over and over. Only by evoking unique behavior (doing something
novel) can a human opponent gain a temporary advantage.

QO The behaviors learned by the Smart Opponent are unique to the human player to
which it is exposed, creating a different experience for each participant.

The learning capability enabled by the NeurRule Technology can be used to inexpensively
simulate large numbers of troops in distributed interactive simulations and virtual reality
applications. Additionally, because human participants must adapt their behavior as the CGF
learns, it becomes an effective training tool.

12

2.2.5 Summary of Computer Generated Force Learning Behaviors

Computer generated forces that learn and behave based on their experiences with the human
player can be developed in a number of ways using various types of Virtual Teammate and Smart
Opponent learning.

Virtual Teammate Learning

Player-Based Mimicking. CGF learns to copy a player's behavior as the game is played.

Player-Based Cooperative Learning. Player "steps into" the CGF and incrementally
modifies its behavior, downloading his or her hand/eye coordination into the control
system of the CGF. Player contributions are steadily phased out as a result of neural
network learning.

Smart Opponent Learning

Player-Based Mimicking. CGF learns to copy a player's behavior as the game is played.

Player-Based Reinforcement Learning. CGF learns to reproduce actions used by player
that prove successful against itself, such as aiming and firing tasks.

Developer-Based Mimicking. CGF learns to copy a developer's behavior as the
developer plays the game during the development process. Learned neural network
behaviors are then used to augment existing capabilities.

Developer-Based Cooperative _Learning. Developer "steps into" the CGF and
incrementally modifies its behavior, downloading his or her hand/eye coordination into the
control system of the CGF during the game’s development. Learned neural network
behaviors are then used to augment existing capabilities.

2.2.6 Sample Learning Scenarios and Implementation Issues

Sample Scenarios

Summarized below are some sample simulation scenarios that can benefit from Smart
Opponent and Virtual Teammate learning. The neural networks shown have as inputs simulation
state variables that define the context of an existing situation, and as outputs, simulation variables
that directly control CGF locomotion and other behaviors. Note any convenient coordinate
system may be used to define neural network inputs. For example, although spherical coordinates
are shown below, Cartesian coordinates could be used just as easily.

13

Artillery

You are in a tank battle, facing a platoon of Smart Opponents. You aim your gun turret
sideways and up and down, and you choose when to fire. As you fight, the enemy learns to shoot
the way you do.

opposing
tank
bearing .) gun azimuth
d/dt(bearing) —> Neural gun elevation
gun azimuth range —> Network fire
and elevation d/dt(range) >

Figure 2.2 Neural Net configuration for Artillery Scenario

Gunfight

You are in a gunfight with Smart Opponents that run around and hide behind obstacles. They

learn from you how to aim and when to fire, and they don't waste ammunition firing while you're
hiding.

bearing () opponent
to opponent '
viewpoint ' obstacle bearing to opponent —>
/ ng d/dt(bearing to opponent) —>{ Neural aim
) 0 obstacle bearing to obstacle —> Network fire
d/dt(bearing to obstacle) 5

Figure 2.3 Neural Net configuration for Gunfight Scenario

14

FireTeam

You must teach each member of a Virtual FireTeam how to respond when attacked. For
example, you show your rifleman how to take up a defensive position and respond with a
counterattack. After training, you direct the Team as the Team Leader.

closest
defensive
opponent

range

g viewpoint
disr%?:%on bearing to opponent —
cg location d/dt(bearing to opponent) —> Neural speed
bearing range to opponent —>! Network direction
didt(range to opponent) vertical cg

Figure 2.4. Neural Net configuration for FireTeam Scenario

Dogfight

You are a pilot engaged in a dogfight. Initially, you can easily shake the Smart Opponent on
your tail, but as the game evolves, he gets better and better at tracking you (“Smart Tracking”).
You can also teach a Virtual Teammate wingman how to fly next to you in formation.

]

desired bearing —>
desired elevation —>f
desired range
bearing
elevation d/dt(bearing)
elevation
d//dt(elevation)
range
d/dt(range)

throttle

pItCh pltch
Neural | | roll
Network throttie

Wby by

Figure 2.5. Neural Net configuration for Dogfight Scenario

We have implemented real-time simulations of systems that demonstrate all of the capabilities
mentioned above [see Section 3.4, Related Work].

15

Typical Implementation Costs

Tables 2.1 and 2.2 list typical implementation costs associated with the sample scenarios
outlined above. Note that learned behaviors can be shared between common CGFs within a
game. Furthermore, a single neural network can be used to encode the behavior of multiple CGFs
by adding extra network inputs that distinguish the CGFs.

Table 2.3. Typical implementation costs associated with sample
scenarios. Memory, code, and execution times are for C code on an
25-MHz 486 PC with math co-processor.

Neural Neural Shared Total Total Total
Scenario Network | Network Code Data Size | Recall | Recall&Learn
Inputs Outputs Size (bytes) Time Time (msec)
(bytes) (msec)
Artillery 4 3 20k 48 k 1.2 19
Gunfight 4 2 20k 32k 1.1 1.5
FireTeam 4 3 20k 48 k 1.2 1.9
Dogfight 9 3 20 k 48 k 1.9 25

Table 2.4. Dypical implementation costs associated with off-line and on-
line learning. Memory, code, and execution times are for C code on an
25-MHz 486 PC with math co-processor.

Time of Shared Per Locate | Per Output | Per Output
Learning Code Output 4-Input Recall Recall&Learn
Size Data Size Space Time Time
(bytes) (bytes) Time (msec) (msec)
(msec)
Off-Line 20k 16 k 0.69 0.16 0.38
On-Line 20k 16 k 0.69 0.16 0.38

16

3. PHASE I RESULTS

Phase I of this project has produced a design methodology for augmenting
computer generated force behavior with the NeurRule Technology concepts of
cooperative and reinforcement learning. The Phase I results indicate that the
resulting Intelligent CGFs can improve task performance through on-line learning,
utilizing information from both supportive and adversarial sources, and that the
NeurRule Technology can coexist with existing SAF software such as modSAF and
SAFDL

3.1 PHASE | TECHNICAL OBJECTIVES

The Phase I work investigated the development of intelligent computer generated force
behaviors using KATrix’s NeurRule Technology. The feasibility of this approach has been
determined through accomplishment of the following Phase I technical objectives:

O Demonstrating that a system operator can endow intelligent agents with warfighting
strategies, tactics, and sensorimotor skill (hand/eye coordination) on-line by
"showing" and "telling" them how to behave, in an incremental manner similar to
a coach training an athlete.

QO Demonstrating that the resulting smart opponents can learn a player's moves and
use them against him, thereby presenting a unique scenario for each player and
encouraging player ingenuity.

U Demonstrating that the performance of computer generated forces can be made to
improve significantly over time by autonomously shifting from a deliberative form
of processing to a reactive one.

The major results of the Phase I effort are summarized below in the following sections:

3.2 Specification of Intelligent CGF Behaviors

3.3 Performance of Intelligent CGF Behaviors

3.4 Integration of Intelligent CGF Behaviors with Existing SAF Systems

17

3.2 SPECIFICATION OF INTELLIGENT CGF BEHAVIORS

To be considered intelligent, CGF behavior must exhibit the following properties:

W From the soldier’s point-of-view, CGF behavior should be indistinguishable from
that of real soldiers.

Q From the trainer’s point-of-view, the behavioral interactions between soldiers and
CGFs are indistinguishable from battlefield performance.

U CGFs can perform any mission or maneuver actual soldiers can.

In other words, in an ideal system, the soldiers think they’re going against other humans, the
trainers think they’re seeing a real battle, not just a game, and any battle can be simulated. To
achieve this capability, CGFs must be able to:

O Exercise a wide range of task knowledge

O Adapt to changes in the environment and opposing force performance

During Phase I of this project, a methodology was developed whereby a developer of CGF
behavior (a battle trainer or SAF operator) could use integrated rule-based and neural net-based
control technology to enable these capabilities.

3.2.1 Intelligent CGF Behaviors - Basic Assumptions

Basic assumptions include the ability of the CGF developer to know exactly what should be
done during a maneuver, and his/her ability to measure success. Therefore it was assumed that
the Battle Trainer/SAF Operator:

U provides rules of engagement (task rules)

O provides rules for improvement (correction rules)

U provides hands-on examples of improvement (operator inputs)
Q) can recognize acceptable performance.

Our approach to CGF development requires that behaviors be defined relative to a “focus of
attention”. The ability to focus is a key aspect of many human motor control tasks. A baseball
player keeps his eye on the ball, a driver keeps his eyes on the road. We require that behaviors be
focused, and devote resources to both the implementation of a maneuver and to the focusing on
objects of interest in the world relevant to that maneuver.

18

3.2.2 Intelligent CGF Development Cycle

Figure 3.1 outlines the design procedure developed during Phase I of the Project for the
construction of learning behaviors in Intelligent Computer Generated Forces.

Modify
Solo
Behaviors

Modify
Y Environmental
Behaviors

Modify
Unfriendly
Behaviors

Modify
Friendly
Behaviors

Modify Friendly Behaviors -

Corrective Task
Rules Rules
Learning

Nets

Figure 3.1. Development of explicit task knowledge.

First, solo behaviors are created, then those dealing with environmental interactions, and then
those involving friendly and unfriendly opposing forces.

19

Solo Behaviors

Solo behaviors are tasks that relate to one’s own body. The ability to move in a specified
direction at a specified speed, to turn at a specified rate, and to assume desired postures are all
solo behaviors. Our technology library includes such low-level vehicle and body functions.

Environmental Behaviors

Environmental behaviors are maneuvers performed with respect to objects that in general
don’t move. If objects of interest in the world include trees, bridges, and buildings, then the
ability to GoTo a bridge or AlignWith a doorway represents an environmental behavior.

Focus Rules

Most behaviors are referenced to something being focused on. When we design a behavior to
cross a bridge, we start out by assuming an object of class bridge is being focused on, then we
design the behavior. We can then cross any bridge within that class, but first we must be focusing
on it. The Focus Rules decide what to focus on. Given a choice of two bridges to cross, they
would choose which one to cross, then the “cross bridge” environmental behavior rules and nets
would perform the task.

Friendly Behaviors

Friendly behaviors involve friendly forces. Once a friendly is being focused on, low-level
functions such as GoToMate, LookAtMate, and AlignWithMate can be used to move with
respect to the object of interest. Higher-level rules can be used to implement formations and
more complex tasks. The key is that the behavior is generic with respect to a chosen class of
friendly force, and is instantiated with particulars at run-time.

Unfriendly Behaviors

Unfriendly behaviors involve opposing forces. In terms of low-level navigation, they can have
much in common with friendly behaviors, such as the ability to GoToEnemy, LookAtEnemy, and
AlignWithEnemy. In this case, a simple change of focus (from friendly item to opposing item) can
tap into a rich library of fundamental behaviors.

Within each of the above groups, behaviors are built from the building blocks of task rules,
corrective rules, and learning neural nets as shown in Fig. 3.1. The development process is cyclic
because it may be discovered during the construction of a high-level behavior, such as
QuietlySurroundEnemy, that a new lower-level solo behavior, such as MoveQuietly, must be
created. Combined with the concept of focusing, the behavior groups help organize the type of
knowledge utilized by computer generated forces.

20

3.3 PERFORMANCE OF INTELLIGENT CGF BEHAVIORS

This section presents results associated with applying the intelligent CGF development
methodology of Section 3.2.3 to two battle scenarios. Sections 3.5 and 4 describe how the Phase
IT effort will further develop the methodology and integrate real battle trainers.

3.3.1 Forest Chase Battle Scenario

The experiments discussed here represent results from a forest chase battle scenario involving
a tank chase through a dense forest. Learning technology enables the following types of CGF
behavior:

W A single unit CGF chases a retreating tank through the forest.
Q) The retreating tank tries to shake the CGF through evasive maneuvers.

U The CGF learns to reduce tracking error over time using rules and teleoperator
inputs.

Q The CGF learns to reproduce the retreating tank’s evasive maneuvers.

QO Additional members of the chase also reproduce the retreating tank’s evasive
maneuvers, showing the applicability to group behaviors.

As shown in Fig. 3.2, the forest consists of rectangular poles and the tanks are represented as
triangular hovercraft (jets). Although the graphical respresentations used are simple, the results in
the following sections demonstrate the utility of the NeurRule Technology in CGF applications.

@\l

Figure 3.2. The simplified forest chase environment.

21

CGF Performance with No Learning

A single unit CGF chases a retreating tank through the forest. The retreating tank tries to
shake the CGF through evasive maneuvers.

Obstacle avoidance, no learning

In Experiment 1a, the goal of the maneuver is to dash from one end of the forest to the other
while avoiding trees that may get in the way. The jet executes this "dash" behavior with the
following rules, which represent a hierarchical, goal-directed description of the task.

To dash,
If you're too close to a tree, avoid it.
Otherwise, go from pole to pole.

To avoid a tree,
stop and turn until you're not facing it.

To go from pole to pole,
go to the pole of interest,
then focus on the other pole.

To go to the pole of interest,
first get near the pole,
then go around it.

To get near the pole,
look at the pole and move toward it
until you're within a specified distance from it.

To go around the pole,
circle around it,
leaving it to the side it started on,
until you've reversed course.

Each of these rules encodes a modular piece of knowledge. When combined, they perform a
complex task. Each rule falls into an explicit task functional block shown in Fig. 3.1. The third
rule is an environmental behavior focus rule, whereas the remaining rules are environmental
behavior task rules. The NeurRule Rule-Based Control Library enables these rules to include
embedded C code.

As shown in Fig. 3.4a, the jet performs the intended task - going from pole to pole
- using a rule-based, goal-directed task description. However, it keeps getting
stuck near trees. Experiment 1b adds neural network-based learning to improve
its performance.

22

Chasing, no learning

Experiment 2a depicts a second jet trying to chase the first jet. The second jet is executing a
"chase" behavior that includes the following rules.

To chase,
If you're too close to a tree, avoid it.
Otherwise, follow the enemy
while bypassing trees.

To follow the enemy,
go to the specified distance from him,
look at him, and don't slide sideways.

The first rule is part of the CGF “avoid tree” environmental behavior, whereas the second is a task
rule within the CGF “follow enemy” unfriendly behavior.

As shown in Fig. 3.7a, the chasing jet performs the task using rules only, but not
very well (intentionally). Experiment 2b shows how neural net learning improves
the performance.

Formation flying, no learning

Experiment 3a shows two wingmen attempting to fly in formation behind the chasing jet. The
"follow" behavior includes the following rules.

To foliow,
If you're too close to a tree, avoid it.
Otherwise, follow your mate
while bypassing trees.

To follow your mate,
go to the specified distance from him,
align yourself behind and beside him,
look in the direction he is,
set your speed equal to his,
and don't slide sideways.

As part of Fig 3.1, the second rule shown above is considered a CGF friendly behavior task rule.

The wingmen perform their task well using only rules until they get close to a tree,
at which point they slam on the brakes to avoid it. As shown in Fig. 3.11, the basic
tree-bypassing rule doesn't work well enough. Experiment 3b uses neural network
learning to fix the problem.

23

CGF Perfcrmance with Learning

Learning from rule how to avoid obstacles

This experiment improves the "dash" behavior by phasing in the ability to smoothly bypass
trees.

To dash,
If you're too close to a tree, avoid it.
Otherwise, go from pole to pole, and
bypass trees that look familiar.

To bypass a tree,
If you're near the tree and facing it,
turn and slide away from it.
If you're near the tree and turning toward it,
turn and slide away from it.

The last rule implements a proportional-derivative control law using fuzzy rules. With respect to
Fig 3.1, it is considered a corrective rule within the CGF “bypass tree” environmental behavior. It
enables the jet to smoothly bypass trees that look familiar. We use the output of a neural network
to provide a measure of familiarity.

Figure 3.3 depicts the neural net used to recognize trees. It represents an environmental
behavior learning net within Fig. 3.1. It takes as inputs information representing the present state
of the world relevant to recognizing trees, in this case, range and bearing to the nearest tree and
their respective rates of change. The neural net outputs a number between 0 and 1 that indicates
how familiar the jet is with the closest tree. Its output is initialized to O indicating that it knows
nothing about trees. During training, the neural net is taught to output a 1 whenever it encounters
a tree, so that in the future it will recognize it and invoke the tree-bypassing rule.

The more the jet is exposed to trees, the more familiar they look. When trees look familiar,
they are bypassed, reducing the amount of time it takes the jet to go from pole to pole. The
behavior snapshots of Fig. 3.4 and the error plots of Fig. 3.5 show how the jet's performance
improves over time.

rangeToTree ——
rangeToTreeRate — Neural Net | familiarWithTree
bearingToTree —_—

bearingToTreeRate =~ ———|

Figure 3.3. Neural network used to improve obstacle avoidance behavior.

24

This type of context-dependent learning, exhibiting learning curves similar to
those associated with human skill acquisition, can be used to provide DIS trainees
with more-realistic friendly and opposing forces.

S 2]
s :
: 3
1% 2]
% -
- ~
0= bz 1
mlm a
!' -
e -~
- -
- P
I -0
- IS
* ~
-~
r S
- S
o
>

—n
—mM

(a) Before learning, 5" attempt. (b) After learning, 5" attempt.

Figure 3.4. Snapshots of obstacle avoidance behavior before and after learning.

30 -
25 -
20 -
16 O Before Learning
~ # After Learning
10
5
[V

Figure 3.5. Improvement in obstacle avoidance behavior due to learning.

25

Learning from rules how to chase

In Experiments 2a and 2b, the ability of the chasing jet to follow its enemy is proportional to
its familiarity with the relative position of the enemy through FollowEnemy rule. In Experiment 2a,
with no learning, the chasing jet’s familiarity with the enemy is assumed to be a small default value
(0.3). In Experiment 2b, the chasing jet’s familiarity with its enemy is a learned function provided
by a neural network. The inputs and output of the net are depicted in Fig. 3.6. Using the neural
net, the chasing jet learns to recognize relative enemy positions. When the enemy is in a state that
looks familiar, the jet can follow the enemy more closely using a stronger gain on the low-level
tracking behaviors embedded within the FollowEnemy rule.

rangeToEnemy —_—
rangeToEnemyRate ~ ——— Neyral Net |—» familiarWithEnemy
bearingToEnemy e

bearingToEnemyRate =~ ——»

Figure 3.6. Neural network used to improve chasing behavior.

The output of the neural net acts as a context-dependent gain that becomes
stronger for areas of the state space with which it is familiar. Over time, the jet
follows its enemy better and better, as shown in the behavior snapshots of Fig. 3.7
and the range and bearing error plots of Fig. 3.8.

» »
~y* N
2
-

r)
- Py
- -
| |
»~ -~
-
-~ -
[5] :
4 -

-

A

-

- - n
-~
- - *
.~ |
~
S
- A
Mo
v A
¥ Aa
> >

ﬂ ﬂ

(a) Before learning, 13" attempt, (b) After learning, 13" attempt.

Figure 3.7. Snapshots of chasing behavior before and after learning.

26

25 -

20 -

161 DO Before Learning

M After Learning

10 -

R RMSE

-
(2]

5 7 9 11 13 15
Attempt

1.6
14
1.2

DO Before Learning

08 B After Learning

0.6
0.4
0.2

RMSE

B

1 3 5§ 7 98 11 13 15
Attempt

Figure 3.8. Improvement in chasing behavior due to learning.

Learning from rules how to fly in formation

Experiment 3b uses a neural network to improve tree avoidance during formation flying. As
shown in Fig. 11, the network has eight inputs representing range, bearing, and rates associated
with the jet’s mate and the closest tree. One net output learns to turn the jet (yawThrust), while
the other output learns to thrust the jet laterally (latThrust). Initially, these nets contribute
nothing to the overall control command (all their weights are zero). Over time, however, they
discover how to steer the jet past trees while keeping it in formation.

The goal of neural net learning is to reduce the control commands suggested by the tree-
bypassing rule (which only considers range, bearing, and rates associated with the closest tree).
Because the net has more context information than any single rule, it can discover control
interactions that augment the ability of the rules.

27

In this experiment, the neural net discovers an interesting solution. As shown in Fig. 3.10, it
transforms the original triangular flying formation into an "L" formation, where one wingman is
directly behind the chaser, and the other is off to the side.

rangeToTree —_—

rangeToTreeRate ~——;

bear.ingToTree E—— L familiarWithTree&Mate
bearingToTreeRate ————» Neyral Net |———— yawThrustinc
rangeToMate — —— latThrustinc
rangeToMateRate ———»

bearingToMate —

bearingToMateRate —

Figure 3.9. Neural network used to improve formation flying behavior.

Figures 3.11 and 3.12 show that the learned formation allows the jets to stick
together while flying through the forest. In essence, the neural net used the rule-
based control law as a good starting point, but improved upon it in a non-obvious,
yet efficient, way.

N
=\ <\
PZAN

(a) Before learning. (b) After learning.

Figure 3.10. Comparison of flying formation before and after learning.

28

N
.
S
b
O

:i‘? :‘gn
e pap ¢
ﬁ“ ‘x
E:ﬂ 4 §ﬂ
% - 3
.
. =% &
0 A
‘v*ﬂ" - g’ﬂ
>y <* L 4 b
> % s v >
', v %
[- v "
»
‘j" 2 & >
. i
L 4 Pﬂq ® 4
£ v « &£ "
>

: th
(a) Before learning, 6™ attempt. (b) After learning, 67 attempt

Figure 3.11. Snapshots of flying formation behavior before and after learning.

9 -
8 4
7 4
6 4
m 9 OBefore Learning
% 4 - H After Learning
3
&,
1 4
0 -

1 3 6 7 9 11 13 15
Attempt

Figure 3.12. Improvement in formation flying due to learning.

29

Learning from operator how to avoid obstacles

In Experiment 4, on-line teleoperator inputs were used to teach the retreating tank how to
avoid trees. The retreating tank starts out using rules to go from waypoint to waypoint, but no
knowledge of how to avoid trees. A neural net adds yaw thrust and lateral thrust to avoid trees as
it learns.

The net starts out contributing nothing. Figure 3.13a shows the retreating tank’s distance to
obstacles (trees) without learning. The plot only includes data for obstacles that are within 45
degrees of the tank’s velocity vector and less than 20 meters away. Figure 3.13b shows how
learned teleoperator control commands increase the minimum distance to obstacles.

20
15 4
Distance to 10
Obstacle
5 4
0

Time
(a) Before learning.

Figure 3.13. Continued on next page.

30

0.2
0.15 +

Operator

Yaw Thrust 0 1irir i o ot ettt A ppepeat e ey L Neural Net

Time

Operator

Lateral Thrust 0 {—-Aiar Bl e Al bt Do apeeby LR A A | Neural Net

Time

20
18
16 1
14 -

Distanceto 1271
Obstacle 10 1

ON &»O
— .
L

Time
(b) After learning.
Figure 3.13. Improvement in retreating tank distance to obstacle due to on-line
operator training. Operator teaches retreating tank how to avoid obstacles using

yaw thrust and lateral thrust. Closest distance to tree decreases over time due to
learning as neural net takes over responsibility from operator.

31

3.3.2 Bridge Crossing Battle Scenario

The second battle scenario involves getting a CGF to cross a bridge efficiently. It is assumed
that the bridge has a north end and a south end, and that the tank can focus on waypoints located
at both ends of the bridge and can focus on its centerline (a “path”). Figure 3.14 shows the
simplified environment of the bridge crossing scenario.

Note that in the forest chase experiments, the goal of learning was to improve the
performance of an avoidance behavior, that is, the avoidance of obstacles. This experiment
involves behavioral attraction, particularly the regulation of movement with respect to the
centerline of a bridge. The main goal is to is to have the tank cross the bridge along its centerline

when approaching it from either the right or the left. It must start out using rules only, and should
then improve its performance given additional corrective rules and on-line teleoperator inputs.

north end waypoint

north right waypoint @ ! @ north left waypoint

+ naorth ramp waypoint
!
i
|
I
]
bridge centerline !
|
1
|
|
|

—-+— south ramp waypoint

north left waypoint @ I @ south right waypoint

south end waypoint

Figure 3.14. The simplified bridge crossing environment.

32

CGF Performance with No Learning

There are 27 rules that make up the bridge-crossing knowledge base. As described for the
forest chase scenario, they implement an intuitive, modular control law. Shown below is an
outline of the rule heirarchy.

Solo Behaviors

LongitudinalSpeed()
LonThrust()
LateralSpeed()
LatThrust()
YawSpeed()
YawThrust()
GetOperatorCommands()

Environmental Focus

WaypointFocus()
rangeTo
rangeToRate
bearingTo
bearingToRate

PathFocus()
rangeTo
rangeToRate
bearingTo
bearingToRate
bearingFrom
bearingFromRate

Environmental Behaviors

CrossBridge()
ApproachBridge()
FollowWaypoints()
GoToWaypoint()
LookAtWaypoint()
LateralSpeed()
FollowPath()
FollowPathWithRules()
GetToCenterLine()
GoToPath()
AlignWithPath()
StayOnCenterLine()
GoToPath()
AlignWithPath()
FollowPathWithOperator()
GetOperatorCommands()
FollowPathWithNets()

33

LearnToFollowPath()

NetLocate(0
NetShape()
RecallHowToFollowPath()
NetLocate()
NetRecall()
GoOverBridge()
FollowWaypoints()
FollowPath()
DepartBridge()
FollowWaypoints()
TurnAround()

FollowWaypoints()

Bridge crossing, no learning

The nominal function of the bridge-crossing rules is to follow waypoints that are located at
each end of the bridge. Waypoints are followed by focusing on the next waypoint, looking at it,
and moving forward at a certain speed. Because there is no notion of alignment with this
preliminary strategy, if the tank approaches from the left or the right, and not straight on, it will
produce an arcing trajectory in it’s attempt to go from it’s beginning waypoint to the one on the
other side of the bridge. Figure 3.15 shows the resulting overshoot of the tank’s distance from
the bridge centerline.

Distance from

Centerline 0
54
10 +
-15 4

Time

Figure 3.15. Nominal distance of tank from centerline of bridge using waypoint-
Jollowing rules only. Plot shows six approaches, with approach direction
alternating from right to left.

34

CGF Performance with Learning

A learning neural net can learn to reduce this centerline overshoot. As shown in Fig. 3.16, the
neural net takes in range and bearing from the path (centerline), and outputs yaw and lateral thrust
commands. The net is trained by rules and teleoperator inputs.

rangeToPath —_— Thrust
rangeToPathRate — Neural Net > yawlhrus
bearingFromPath —> ————— lateralThrust

bearingFromPathRate =~ ———»

Figure. 3.16. Neural net used by rules and operator to improve bridge-crossing performance.

Learning from rules how to improve bridge crossing

Corrective rules use the GoToPath() and AlignWithPath() library functions to provide yaw
and lateral thrust commands that are used to help control the tank, and train the neural net.
Figure 3.17 shows the improvement in performance based on rule-based net training.

35

0.15

01+
0.05 } Rules
------ Neural Net
Yaw Thrust 0 dxft
0.05 +
01
Time
Rules
Lateral Thrust 0 fgu—oif it g Ml e e Do | Neural Net

Time

20
15 +
10 +

Distance from
Centerline

Time

Figure 3.17. Improvement in bridge-crossing performance due to neural net
learning from path-following rules. Rules use vehicle library functions
GoToPath() and AlignWithPath() to provide longitudinal thrust, lateral thrust,
and yaw thrust corrections that are used for learning.

36

Learning from operator how to improve bridge crossing

In this experiment, corrective yaw and lateral thrust commands provided by an operator are
used to help control the tank, and train the neural net. Figure 3.18 shows the improvement in
performance based on rule-based net training. By controlling yaw thrust and lateral thrust
independently, the operator can vary the learned response. For example, the data shown here
indicates that the operator taught the tank to “broadslide” into the turn by laterally thrusting
toward the bridge centerline while turning away from it. The last two of the six bridge crossings
shown in Fig. 3.18 are done without any operator input, showing that the neural network has
learned to improve significantly the initial performance shown in Fig. 3.15.

37

0.2
014

0.1 +

Operator
------ Neural Net

Yaw Thrust

024+ ¢

031
04 1

- an i EFEN—
.---—,...-..-.n;‘"“

-0.5

Time

H

N W
. N
+ +

Operator
------ Neural Net

Lateral Thrust

| Tac 3 NN

Time

20
15 +
10 ¢+

Distance from
i 0 hd T g ———
Centerline

Time

Figure 3.18. Improvement in bridge-crossing performance due to neural net

learning from on-line operator. Operator controls independent yaw thrust and
lateral thrust.

38

These results indicate that CGFs can not only initiate tasks using a predominately
rule-based task description, but can improve their performance using corrective
rules and teleoperator inputs on-line. Furthermore, because the behaviors are
developed with respect to a focus of attention, the acquired skill can be re-applied
to other situations that involve similar objects simply by resetting the CGF’s focus
of attention.

3.4 INTEGRATION OF INTELLIGENT CGF BEHAVIORS WITH EXISTING SAF SYSTEMS

3.4.1 Related Work

The secret to this type of machine learning is neural networks. Neural networks are function
approximators that learn to represent meaningful information by being shown typical input/output
examples. Different applications require different neural network architectures.

Semi-Automated Forces

SIMNET SAF: The SIMNET SAF system was the first real-time SAF system developed for
combined arms man-in-the-loop training. First developed in 1985, the architecture consisted of an
"AI" frontend running on a Symbolics Lisp machines, with the simulation backend running on
Masscomps. This architecture was deficient in that the interface between the Symbolics and
Masscomps was not flexible. Once a mission was downloaded from the frontend to the backend,
the mission could not be modified. This architecture was later migrated to a MIPS frontend and
backend. If this architecture is chosen as the basis for Phase II, the NeurRule Technology will
interface with the models on the Simulation Computer (Backend) and enhance their tactical
capability. Decisions which were static and algorithmic up to now, will be made adaptive and
reactive. Several of the Phase I team members developed portions of this system.

ModSAF: ModSAF is the fundamental SAF layer advocated by the Government. It arose
out of the original SAF architecture, and is DIS compatible. The purpose of the architecture is to
provide modularity between different functional components of the SAF system. It has not,
however, improved on the performance of the planning modules themselves. If ModSAF is
chosen as the basis for Phase II, the NeurRule Technology will be used to replace those portions
of the simulation software which control entity behavior. This technology will save the cost of
maintaining and adding functionality to ModSAF at the entity model level.

WISSARD-SOAR: The SOAR model of reasoning uses a rule-based technology similar to
that used by KATrix. However, it lacks the neural network learning capability. KATrix's neural
network integration methodology could make SOAR run faster for commonly used air-to-air
maneuvers.

39

WISSARD-FFCS: The Fast Futures Contingency System (FFCS) uses an event tree to
generate potential outcomes. KATrix's technology can generate candidate trees which represent
better approximations of outcomes.

Previous Applications of the NeurRule™ Technology

We have applied the concepts embodied in the NeurRule Control Architecture to a variety of
control tasks.

Q Handelman and Lane [1993a] address the simple problem of learning how to balance
and position an inverted pendulum. Control system processing transitions smoothly
and quickly from declarative rules to reflexive neural networks while significantly
improving performance and decreasing computation.

O In Handelman [1992] teleoperator inputs are used to download a person's hand/eye
coordination into a learning control system. Initially, because the neural network
starts out knowing nothing, the operator must perform the pole-balancing task.
Over time the neural network assumes more and more control responsibility, and
ends up encoding an effective nonlinear control law that is very different from the
operator's piecewise linear inputs.

Q In Handelman, Lane, and Gelfand [1992] rules that are intentionally similar to what a
flight instructor might tell a student pilot are used to train neural networks how to
perform a straight-in aircraft approach and landing. This allowed a smooth transition
from rule-based to network-based operation results in improved performance and
reduced computation.

O Handelman, Lane, and Gelfand [1993] and Handelman and Lane [1993b] describe a
robotic assembly task in which the controller uses intuitive rules to begin the task,
and neural network learning to improve system performance.

Q In Handelman and Lane [1993c], the smart opponent concept is applied to an
interactive video game. The computer generated smart opponent learns a player's
context-dependent moves and uses them against him.

Other Approaches to Hybrid Intelligent Agents & Learning

The uniqueness of our approach to robotic skill acquisition can be seen when compared to
other efforts in computer generated forces and behavioral representation. Many researchers point
out the need for both high-level symbolic processing and low-level reactive behavior in intelligent
agents [Gordon & Subramanian, 1993; Gat et al, 1993; Chaib-draa et al, 1993]. However, few
systems smoothly integrate the two types of processing, and even fewer systems learn and adapt.

40

Our approach to reinforcement learning also is consistent with both classical and genetic
algorithmic [Stengel, 1986; Fogel, 1995 and Goldberg, 1989] approaches in that it can determine
optimal control laws and plans of action. However, both classical optimization and genetic
algorithm approaches often slowly converge to such optimal solutions. This is usually due to
poor choices for the initial parameter values and relatively undirected (i.e. non-gradient) searches
in fairly large parameter spaces. Since the NeurRule Technology presented here benefits from the
use of both human explanation and demonstration, convergence to the optimal solution during the
reinforcement learning process is greatly accelerated.

3.4.2 Role of NeurRule™ Technology

Much effort has been devoted to planning in SAF systems, especially with respect to vehicle
movement. ModSAF’s architectural paradigm in planning movement is that of generate and test.
Several possible paths are generated and are tested for acceptability based on a few simple factors.
A second pass categorizes the best approach. When standards are not reached, the better
approach is edited to improve its acceptability. In this way, a vehicle can be made to avoid a
building, cross a bridge, etc.

Our approach to CGF behavior includes the ability to easily implement pre-determined plans
of action with nearly verbal rule-based task descriptions. The difference is between teaching a
pilot how to land a helicopter by giving him a flight manual and interactive help (something the
NeurRule technology is good at), and in telling a pilot to plan a flight from home base to a target
while avoiding known surface-to-air missile sites (something existing ModSAF technology is
good at). Both technologies can coexist, and in fact can benefit from each other.

NeurRule rule-based control technology keeps the control law in a form that is easily modified
by system operators. Algorithms and equations of the ModSAF planning modules can be
accessed through the rules, and need not be edited directly. Such interaction is an intentional
architectural feature of ModSAF. For example, the LibMoveMap navigational algorithms in
ModSAF include functions permitting the path search process to be modified and interrupted
during operation (as evidenced by the functions movemap set goal(), movemap update(),
movemap_next_point(), movemap_change obstacle(), etc.). In fact, the LibMoveMap
Programmer’s Guide states,

“LibMoveMap has been designed to solve the near-term navigation problem ... In order to
make the problem more tractable, the following problems are not addressed by
libMoveMap, and thus must be addressed by higher layer software modules: Selection of
non-conflicting near term goals, choosing new goals when the desired behavior cannot be
achieved, implementing the plans produced by giving command to the vehicle dynamics
model, ...”

Application of the NeurRule Technology proposed in this project can fill this gap.

Futhermore, the type of on-line neural network learning proposed provides additional learning
capabilities not yet exploited in any SAF system to date, including:

41

U Behavior blending. Neural nets can be used to “fuzzify” rules of engagement which
decide how to switch from one task to another. For example, assume that there exist
SAF “attack” and “retreat” behaviors. Some means must be provided for switching
between the two behaviors. Neural nets can learn when to invoke each behavior
based on experience.

U Context dependent behavior. What the CGF does depends on what other entities,
real and synthetic, do on the virtual battlefield.

O Different training experience for different soldiers. Different soldiers are apt to do
different things, and the context-dependent behavior will reflect these differences.

QO Different training experience for a given soldier who does different things over time.

O Reduced need for discrete levels of competency in opposing forces resulting in more
realistic simulations. There need not be abrupt jumps in the perceived ability of a
synthetic opposing force. No level 1 difficulty, then level 2 difficulty, etc., just a
smooth and steady (more human-like) increase in CGF ability.

O Battle trainers can create personal CGFs that evoke specific behaviors (very
aggressive, very incompetent, etc.) favored by them.

With the simple ModSAF hooks described above, these capabilities can augment existing CGF
behaviors.

NeurRule Technology also can help alleviate some known problems with existing SAF
systems. As an example, the SAFDI User’s Guide points out that, “as with any complex
software, the SAFDI system has limitations, both in terms of behavioral representation and
realism.” We don’t point out some of these faults to beat up on SAFDI, but to indicate how
NeurRule technology might be used to fix these and similar SAF problems.

Here are some hints given by the SAFDI User’s Guide about dynamic obstacles [page 4-4]:

“SAFDI entities never consider vehicles which are in motion at the moment they route. As
a result, it is up to the operator to avoid collisions with moving vehicles. Keep SAFDI
units well away from each other and manned simulators when in motion. When moving
with manned simulators, let the manned simulators move behind the SAFDI entities so they
can see them and help to avoid collisions. Finally, the SAFDI Operator must carefully
watch entities that are routing near other vehicles at all times and either halt or reroute
entities that threaten to collide with one another.”

NeurRule CGFs are capable of focusing on many things at once, such as the closest enemy, and a
particular mate, and the closest tree. Using low-level inhereted behaviors, agents can easily be
made to track or avoid any of these things. In fact, using the learning ability of neural nets, agents
can learn the dynamics of other entities in the environment and predict their paths. NeurRule

42

technology can therefore be used to modify and improve upon existing SAF obstacle avoidance
behaviors, and in doing so reduce operator workload.

Here are some hints given by the SAFDI User's Guide concerning formations [page 4-4]:

“Normally, SAFDI entities are not aware of, and therefore will not maintain, formations.
The only exception to this is when SAFDI units are ordered to attach and follow, in which
case they appear to maintain a formation relative to the leader. If the leader moves
erratically, the formation will break up. Since SAFDI entities do not avoid other moving
vehicles, the SAFDI Operator should take care to use attach and follow only when the
leader and all of the following vehicles have sufficient distance between them. As always,
the SAFDI Operator should observe the motion of the following entities and alter their
routes if a collision is imminent.”

As demonstrated by the Phase I results described in Section 1.6, NeurRule agents possess data
and behaviors capable of not only maintaining basic formations with no operator intervention, but
can even learn on their own how to improve on an initial rule-based task description. By using
this technology, formations that would otherwise break down into anomalous behavior would be
fixed, and operator workload would be reduced.

The NeurRule Intelligent Agent software libraries are written in C. They are relatively
efficient, and completely portable. Libraries are running on PC-compatible computers under both
DOS and Windows, and on Silicon Graphics Workstations under IRIX 5.2. Ports to other
operating systems and machines are straightforward. Consequently, the technical feasibility of
linking the NeurRule Intelligent Agent software libraries with SAF systems written in C or C++ is
assured.

43

4. PHASE I1 WORK

4.1 PHASE Il TECHNICAL OBJECTIVES

The two main goals of the Phase II effort are to demonstrate that:

L KATrix's NeurRule Intelligent Agent Technology enables fully-autonomous and
adaptive CGF's to be developed easily, quickly, and efficiently by non-programmers
for dismounted infantry applications in urban environments, and

QO SAF operators can gradually shift their attention from low-level control tasks to
high-level coordinated plans of action as smart opponent and virtual teammate CGFs
gain competence learning relevant assault tactics and evasive maneuvers.

Specific Phase II objectives include:

Q Develop a set of “core” NeurRule Technology CGF behaviors (e.g. attack, hide,
evade, formation, etc.) consistent with operations of dismounted infantry in an urban
environment.

Q Create a military-friendly NeurRule Technology CGF Development System, with a
point-and-click graphical user interface, allowing SAF operators to quickly design
complex CGF behaviors by selecting and connecting appropriate core (and custom)
behaviors and instantiating them with desired goals and constraints of operation.

U Integrate the NeurRule Intelligent Agent Control Architecture with the Dismounted
Infantry in a Virtual Environment (DIVE) simulation system. Integrate with an
existing dismounted infantry SAF (e.g. SAFDI) if appropriate.

U Interface the NeurRule Technology CGF Development System with the DIVE
simulation system to enable interactive CGF behavior creation and modification.

U Prototype Smart Opponent and Virtual Teammate CGF behaviors

e Generate intelligent CGF behaviors implemented in Phase I using Phase II
Development System.

e Demonstrate ability of SAF operator to both specify smart CGF behaviors and
fine-tune using cooperative and reinforcement learning.

e Assemble CGF behaviors developed into tactical libraries for dismounted
infantry operations in urban environments.

U Quantify power of NeurRule approach to CGF Development in terms of:
e Reduced cost of developing CGF behavior

44

e Reduced operator workload

e Reduced number of operators required to obtain desired level of simulation
fidelity.

4.2 PHASE Il TECHNICAL APPROACH

4.2.1 Authoring of Intelligent Computer Generated Force Behaviors

KATrix has currently developed a NeurRule™ Technology Authoring Tool that permits a
designer or operator to graphically flowchart desired behaviors, specifically, the interaction of
intelligent agent reflexes, goals, and skill learning with player responses and other game control
logic. The graphical tool simplifies the overall development process by permitting designers to
schematically build complex intelligent agent behaviors incrementally, without a lot of
programming. The NeurRule Authoring Tool provides a framework within which NeurRule
Intelligent Agents may be created. The Tool promotes a three-step design procedure, depicted in
Fig. 6.1. First, agent classes are created. Then behaviors for these agents are created. Finally,
agent behaviors are tested and tuned within the host application. '

Create Create Test and Tune
— Agent Agent Agent >
Classes Behaviors Behaviors

Figure 4.1. Three step design procedure for building NeurRule Intelligent Agents.

Agent classes represent the various types of entities that can interact within the
host application. Users create new agent classes by deriving them from a set of
base agent classes.

Agent classes have data and behaviors associated with them, and derived agent classes inheret
data and behaviors associated with the agent classes from which they are derived. By mirroring
the polymorphism and inheritance features of object-oriented programming technology, agent
classes represent a compact and flexible entity description.

Using the NeuRule Authoring Tool, users interact in point-and-click fashion with the agent
class hierarchy. Depicted in Fig. 4.2, the agent class hierarchy shows the ancestry of all existing
classes. For example, at the root is the ENTITY agent class, from which all other agents classes
are derived. An ENTITY has a position and orientation (among other things), and behaviors such as
SetOrientation. A MOVING_ENTITY is derived from an ENTITY, and therefore has all of its
capabilities, but includes additional information and capabilities relevant to entities that move,

45

such as a velocity and behaviors like GoTo and LookAt. Similarly, agent classes such as VEHICLE
and PERSON are derived from MOVING_ENTITY.

ENTITY
Data: position, orientation ...
Behaviors: SetOrientation, ...

MOVING_ENTITY
Data: velocity, ...
Behaviors: GoTo, LookAt, ...

VEHICLE
Data: fuel, rangeToEnemy, ...
Behaviors: GoToEnemy, LookAtEnemy, ...

PERSON
Data: hunger, fatigue, ...
Behaviors: LookForShetter, ...

SOLDIER
Data: ammunition, ...
Behaviors: AimAtEnemy, Fire, ...

ATM_GUNNER
SAW_GUNNER

GRENADIER

RIFLEMAN

IFV
Data: coaxialGun, TOWmissiles, ...
Behaviors: FireCoaxialGun, LaunchMissile, ...

TANK
Data: coaxialGun, 105mmMainGun, ...
Behaviors: FireCoaxialGun, FireMainGun, ...

Figure 4.2. Sample agent class hierarchy.

Although the NeurRule Authoring Tool includes many agent classes implementing common
entities, the intent is to make it easy for users to add new agent classes that reflect the specific
needs of their application. Fig. 4.2 depicts how TANK and IFV agent classes might be derived
from the VEHICLE agent class, whereas the RIFLEMAN, GRENADIER, SAW_GUNNER, and
ATM_GUNNER agent classes might be derived from a SOLDIER class which is derived from the
PERSON class.

The availability of numerous inherited behaviors greatly simplifies the creation of new
intelligent agent behaviors. For example, in the simulations discussed previously (Section 3.3),

46

the JET agent class was derived from the VEHICLE agent class, a base class of the library.
Consequently, the JET behavior FollowMate invokes the basic VEHICLE behaviors GoToMate,
AlignWithMate, LookInDirection, LongitudinalSpeed, and LateralSpeed.

In order to create an agent behavior, the user must give the behavior a name,
specifiy the agent’s focus of attention for that behavior, and build up the desired
behavioral response using rules, neural nets, predefined low-level core behaviors
inherited from ancestral agents, and predefined high-level behaviors called
“ClipSmarts”.

4.2.2 Trainer-in-the-loop CGF Behavior Development

To manage the increased complexity associated with urban environments, the user interface to
a SAF system must not only allow the operator individual control over all entities in the
simulation, but also enable him or her to interactively assemble libraries of compound or
coordinated actions, specify the goals of the behavior, and automatically trigger appropriate
patterns of response given the context of the situation. In this way, the SAF operator can
gradually devote his or her attention to higher-level control tasks and mission responsibilites as
the CGF intelligent agent gains competence implementing lower-level control tasks, coordinated
actions and context-based behavioral responses.

The key to obtaining realistic synthetic soldiers is to combine the booksmarts contained in
Handbooks and Manuals with the operational experience of real soldiers. Insofar as battle trainers
are the fighting experts, the goal is to transfer their knowledge of fighting into synthetic soldiers
(and hence, of course, into real soldiers as well). Figure 4.4 represents how a battle trainer / SAF
operator fits into the CGF behavior development cycle.

47

Modify
Solo
Behaviors

Modify
Environmental
Behaviors

Modify
Unfriendly
Behaviors

Modify
Friendly
Behaviors

>
Manuals & .
Handbooks ‘4
5 Operational : Corrective Task
: Experience : Rules Rules
. On-line : Learning
. Assistance : Nets

BATTLE TRAINER

Figure 4.4: Integration of battle trainer into CGF behavior development cycle.

Much of the Phase II work will involve creating convenient channels of communication

whereby an operator can quickly transfer rule-based task knowledge and satisfaction-
based corrections to a synthetic soldier.

48

3. CONCLUSIONS

5.1 IDENTIFIED NEED MET BY THE PROJECT

The advantages of computer generated forces capable of acquiring skill on-line are well
documented. For example, Deutsch [1993] points out that, "Second, third, and fourth encounters
must present responses which keep the trainees focused on the domain problem, and not on
victory by exploiting the computational solecism of the computer generated adversary ... Adroit
but predictable responses are doomed." Downes-Martin [1993] states that, "Given the existence
of current CGF systems ... it is reasonable to propose a system in which each human decision
maker is responsible for the long term training and use of his or her own software assistant.
These software models are initially trained in faster than real time simulations against each other
and more advanced software, with human supervision." We believe our approach to developing
intelligent computer generated forces enables these capabilities.

5.2 ANTICIPATED RESULTS

The overall goal of this project is to demonstrate that KATrix’s NeurRule Technology can
augment current SAF capabilities by integrating rule-based systems with neural networks,
allowing “smart opponents” and “virtual teammates” to be created that continuously learn from
interactions with manned forces, human instructors, and their own mistakes. The Phase I results
demonstrate the effectiveness of the NeurRule Technology. Phase II will make this technology
easy to use by SAF operators and military personnel through an intuitive point and click graphical
user interface that enables the SAF operator to quickly design and assemble complex intelligent
behaviors from the individual soldier up to the platoon level by selecting and connecting
appropriate “core” (follow, avoid, group, formation, attack, defend, cautious, aggressive, etc.) or
customed-designed behaviors and instantiating them with the desired goals and constraints of the
operation. Successful completion of the project will result in semi-automated forces for
distributed interactive simulations that:

O Can continuously adapt their behavioral models in real-time.
e From its own behavior.

e From its opponents (both successful strategies and mistakes).

Q Can be shown and told by a human instructor.
e Cognitive plans of action.

e Hand/eye coordination.

QO Can be created by the SAF operator using a GUI Development Tool instead of by a
programmer.

U Have user selectable learning rates and level of competencies.

W Reduce their computational burden as the CGF entity learns.

49

5.3 POTENTIAL USE BY THE FEDERAL GOVERNMENT

Integration of the KATrix’s NeurRule Technology with existing simulation and training
systems will make CGF behaviors more realistic and adaptable. In addition, this also will save the
government money in costly repetitive software modifications by enabling SAF operators to
modify SAF behavior without the intervention of programmers. The NeurRule Technology is
applicable to Army SAF systems (CCTT), aviation SAF systems (AVCATT, WISSARD, TACTS
range, etc.), undersea training, weapons development (War Breaker), etc.

There is a great effort underway to provide pilots, tank commanders, etc., with pilot's
associates. These associates are computer programs which help the pilot quickly assess his
situation and make decisions. A hybrid neural-network/rule-based pilot's associate would get
better at recognizing situations over time. These SAF-based intelligent entities could be trained in
the laboratory and then installed in a live combat vehicle as a pilot's associate. Eventually, the
entities can become smart enough to pilot the vehicles alone. They would be able to pilot
unmanned ground vehicles, air vehicles, or underwater vehicles. Just like soldiers, the entities can
learn from their mistakes while performing missions. These learned lessons can be assimilated
into the knowledge bases of other entities.

50

6. REFERENCES

Albus, J., 1975. "A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller
(CMAC)," J. Dyn. Syst. Meas. Control, Vol. 97, pp. 270-277.

Chaib-draa, B., Paquet, E., and Lamontagne, L., 1993. "Integrating Reaction, Planning and Deliberation in
Architecture for Multiagent Environment," Proceedings of the Third Conference on Computer
Generated Forces and Behavioral Representation, Orlando, Fla., March, pp. 45-55.

Deutsch, S., 1993. "Notes Taken on the Quest for Modeling Skilled Human Behavior," Proceedings of the
Third Conference on Computer Generated Forces and Behavioral Representation, Orlando, Fla.,
March, pp. 359-365.

Downes-Martin, S.G., 1993. "Collaborative Distributed Simulation," Proceedings of the Third Conference
on Computer Generated Forces and Behavioral Representation, Orlando, Fla., March, pp. 131-
142.

Fogel, D., 1995. Evolutionary Computation - Toward a New Philosophy of Machine Intelligence, IEEE
Press, New York.

Gat, E., Fearey, J., and Provenzano, J., 1993. "Semi-Automated Forces for Corps Battle Simulation,"
Proceedings of the Third Conference on Computer Generated Forces and Behavioral
Representation, Orlando, Fla., March, pp. 69-74.

Goldberg, D., 1989. Genetic Algorithms - In Search, Optimization and Machine Learning, Addison-
Wesley Publishing Co., New York.

Gordon, D.F., and Subramanian, D., 1993. "A Multistrategy Learning Scheme for Assimilating Advice in

Embedded Agents," in Michalski, R.S., and Tecuci, G., Eds., Proc. ond Iy Workshop on
Multistrategy Learning, George Mason University, May, pp. 218-233.

Handelman, D.A., 1992. "Pinhead," a computer exhibit in "It's All in Your Head," a 3-year, 7-city traveling
exhibition on the brain developed for the Franklin Institute Science Museum, Philadelphia.

Handelman, D.A., and Lane, S.H., 1993. "Fast Sensorimotor Skill Acquisition Based on Rule-Based
Training of Neural Networks," in Bekey, G., and Goldberg, K., Eds., Neural Networks in Robotics,
Kluwer Academic Pub., Norwell, Mass., pp. 255-270.

Handelman, D.A., and Lane, S.H.,, 1995. "Human-to-Machine Skill Transfer Through Cooperative
Learning," in Gupta, M.M,, and Sinha, N.K., Eds., Intelligent Control Systems - Theory and
Applications, IEEE Press, Piscataway, New Jersey, pp. 187-205.

Handelman, D.A,, and Lane, SH., 1993. "Smart Virtual Opponents with Human-Like Learning for
Interactive Computer Entertainment," presented at the 1993 Meckler Conference on Virtual Reality,
New York, August.

Handelman, D.A., Lane, SH., and Gelfand, J.J., 1990. "Integrating Neural Networks and Knowledge-
Based Systems for Intelligent Robotic Control," IEEE Control Systems Magazine, Vol. 10, No. 3,
April, pp. 77-87.

Handelman, D.A., Lane, S.H., and Gelfand, J.J.,, 1992. "Robotic Skill Acquisition based on Biological
Principles," in Kandel, A., and Langholz, G., Eds., Hybrid Architectures for Intelligent Systems,
CRC Press, Boca Raton, Florida, pp. 301-328.

Handelman, D.A., Lane, S.H., and Gelfand, J.J., 1993. "Prospects for Cooperative Leamning in Intelligent
Vehicles," Proceedings of the 1993 IEEE Regional Conference on Control Systems, New Jersey
Institute of Technology, August.

Lane, S H., Handelman, D.A ., and Gelfand, J.J., 1992. "Theory and Development of Higher-Order CMAC
Neural Networks," IEEE Control Systems Magazine, Vol. 12, No. 2, April, pp. 23-30.

51

Miyamoto, H., Kawato, M., Setoyama, T., and Suzuki, R., 1988. "Feedback-Error-Learning Neural
Network for Trajectory Control of a Robotic Manipulator," Neural Networks, Vol. 1, pp. 251-265.

Stengel, R., 1986. Stochastic Optimal Control - Theory and Application, John Wiley and Sons, New
York.

52

